中国临床肿瘤学会(CSCO)持续/复发及转移性分化型甲状腺癌诊疗指南2019
上QQ阅读APP看书,第一时间看更新

1 持续/复发及转移性分化型甲状腺癌的诊断及动态评估

甲状腺癌以其发病率逐年增高日益引人关注,根据2018年数据,全球甲状腺癌发病率为6.7/100000,我国每年新增病例达19万(194232例) [1]。值得注意的是,SEER数据库显示美国甲状腺癌患者的5年生存率高达98.1% [2],而我国这一数据仅为84.3% [3],这提示中国甲状腺癌患者的死亡风险不容忽视,同时也意味着我国的相关临床医生将会接诊更多的晚期患者。
分化型甲状腺癌(differentiated thyroid cancer,DTC)主要包括甲状腺乳头状癌(papillary thyroid cancer,PTC)、甲状腺滤泡癌(follicular thyroid cancer,FTC)、Hürthle细胞癌,共占甲状腺癌的94% [4],由于其在一定程度上保留了甲状腺滤泡上皮细胞的功能,如钠碘转运体(sodium iodide symporter,NIS)的表达及摄碘、分泌甲状腺球蛋白(thyroglobulin,Tg)、依赖于促甲状腺激素(thyroid-stimulating hormone,TSH)生长的方式等,使得放射性碘131( 131I)治疗、Tg在复发中的监测及TSH抑制治疗在DTC中具有独特、重要的作用。虽然多数DTC经过规范化的手术、 131I治疗及TSH抑制治疗后预后较好,但仍有14.9%的患者存在疾病持续/复发 [5],7%~23%的患者出现远处转移 [6],这类复发及转移性DTC的处置一直是临床关注的重点。2009年美国甲状腺学会(ATA)指南中首次提出有关DTC复发风险分层体系,该分层主要纳入了病灶大小、病理亚型、包膜及血管侵犯程度、淋巴结转移、远处转移、 131I治疗后全身显像( 131I post-treatment whole body scan,Rx-WBS)等权重因素 [7]。此后,随着M Xing等有关分子特征如BRAF V600E与DTC复发及侵袭性的深入研究 [8-9],以及GW Randolph等有关淋巴结侵袭特征与复发风险的研究 [10],2015年ATA指南对此复发风险分层又进行了更新,将BRAF等分子特征以及淋巴结侵犯特征等因素细化地纳入了风险分层 [11];应指出,在ATA复发风险分层的权重因素之外,患者的一般特征(如年龄、性别)、初始手术、 131I治疗、TSH抑制治疗、肿瘤病理特征及分子特征,如BRAF、TERT基因突变等多种因素均影响着DTC的复发和转移 [12-15]。研究显示,由于生长缓慢等因素,有关DTC复发或前期治疗后肿瘤持续的概念仍很难界定与区分,有研究将维持无病状态1年以上又出现新的病灶界定为复发,反之则为持续,但该界定仍存争议 [5]。持续/复发病灶可以出现在甲状腺床,也可以通过淋巴道、血行或种植等途径出现在甲状腺床以外的部位,如颈部区域淋巴结转移、远处转移等。本指南旨在针对持续(persistence)/复发(recurrence)及转移性(metastatic)DTC(prmDTC)的诊断、治疗及评估进行阐述和推荐。
1.1 诊断基本原则及MDT诊疗模式
【注释】
a.prmDTC的诊治应重视多学科团队(multidisciplinary team,MDT)的作用,推荐有条件的单位将此类患者的诊疗纳入MDT管理。
b.MDT的实施过程中由多个学科的专家共同分析患者的病史、临床表现、影像、病理和分子生物学资料,对患者的一般状况、疾病的诊断、分期/侵犯范围、发展趋向和预后作出全面的评估,并根据当前的国内外治疗规范/指南或循证医学依据,结合现有的治疗手段及患者意愿,为患者制定最适合的整体治疗策略。
c.MDT原则应该贯穿每一位患者的治疗全程。
d.MDT团队应根据治疗过程中患者病情的变化、对之前治疗的反应而适时调整治疗方案,以期最大幅度地提高治愈率、改善生活质量和延长患者的生存。
1.2 诊断方法
【注释】
a.Tg(thyroglobulin)的监测有助于进行术后评估及风险分层。在全甲状腺切除后,无TgAb干扰下,低血清Tg水平具有较高的阴性预测价值,如TSH抑制状态下Tg检测不到(<0.2ng/ml)或刺激性Tg<1ng/ml,预示疾病很可能达到完全缓解;Tg水平增高(如抑制性Tg>1ng/ml)则提示存在疾病持续/复发的可能 [11]。而与 131I-全身显像(whole body scan,WBS)显示残余甲状腺不匹配的可疑增高刺激性Tg(preablative stimulative Tg,ps-Tg)水平可能提示远处转移的存在,由于受到残余甲状腺组织、血清TSH及TgAb水平等因素的影响,目前尚无明确的最佳 131I治疗前ps-Tg界值点用以指导 131I治疗决策,国内有关ps-Tg预测成人远处转移的最佳界值为52.75ng/ml [16,17],儿童为156ng/ml [18],这将有助于为及时修正患者的 131I治疗剂量、避免治疗不足提供分子证据。Tg在 131I治疗前预测疗效及动态疗效评估也有其价值,近期我国学者采用兼顾血清学及影像学的治疗疗效评估体系探索Tg与 131I治疗疗效的关系,显示ps-Tg水平对DTC患者的治疗反应具有预测价值,ps-Tg>26.75ng/ml时对治疗后结构性疗效不佳(structural incomplete response)病灶具有较好的预测价值,为 131I治疗前评估、特别是高ps-Tg者 131I治疗剂量的合理定制提供了依据 [19]。在手术、 131I等治疗后动态监测Tg的变化,有助于判断 131I治疗疗效,对于远处转移性DTC患者Tg动态监测还有助于预测碘难治性DTC(RAI refractory-DTC,RAIR-DTC)的出现 [20]
b.甲状腺球蛋白抗体(Tg antibody,TgAb)的存在会降低通过化学发光免疫分析方法检测血清Tg的测定值,从而影响通过Tg监测病情的准确性 [21],故须同时监测Tg和TgAb水平的变化,并动态分析,在治疗前TgAb明显增高者,TgAb的下降提示手术及 131I治疗有效。TgAb的中位清除时间约3年,对治疗后TgAb持续不降或下降后再次升高者,应进行相关影像学检查 [22]
c.对于prmDTC患者,建议采用多种影像学检查,以便准确评估疾病状态。其中超声是一线检查手段 [7,23]
d.超声检查应采用高分辨率超声仪器,并由有甲状腺超声检查经验的医生进行操作 [24]。颏下至锁骨上、胸骨上后方均是扫查范围,采用横切面及纵切面扫查侧方和中央区,可疑部位使用多切面及多普勒扫查。需特别关注咽后、咽旁及气管食管沟区域。颈部超声评估内容包括颈部淋巴结、甲状腺床、颈部软组织、血管及气管食管。其主要超声成像特点如下(图1):
图1 ①~②甲状腺床局部复发:①甲状腺乳头状癌术后,横切面显示左侧甲状腺床低回声结节,纵横比大于1;②纵切面显示肿瘤内可见血流信号;③~⑥可疑转移淋巴结:③淋巴结门消失,部分囊性变;④淋巴结内大部分囊性变;⑤淋巴结内可见高回声;⑥淋巴结边缘型血流;
图1(续) ⑦不能确定性质的淋巴结:Ⅲ区淋巴结,短轴长约5mm;⑧正常淋巴结;⑨~⑩肌肉软组织复发; 静脉瘤栓:右侧甲状腺床肿瘤组织延伸至右侧颈内静脉; 气管受侵:右侧甲状腺乳头状癌术后复发,侵及气管。(M:肿瘤;IJV:颈内静脉;CCA:颈总动脉;Trachea:气管)
超声不易区别甲状腺床良性病变(术后瘢痕、缝线肉芽肿、食管气管憩室、断端神经瘤以及炎性反应增生性淋巴结等)和复发病灶。超声图像的正确解释需结合临床病史和化验指标。如超声发现局部恶性或可疑恶性病灶,应加做颈部增强CT检查;甲状腺全切术后,超声评估时机应根据患者的复发风险分层和动态疗效评估进行 [25]。1~3个月内超声评估应对比术前临床及影像学资料,判断外科手术是否达到预期目标;清甲后3个月,评估病灶大小及清甲疗效;1~5年内,低危和中危患者/ER和IDR患者不必要每年一次超声检查;高危患者,推荐每年1~2次超声检查;术后>5年,低危和中危患者/ER和IDR患者:不再推荐规律超声检查;再5年之后,行第2次风险评估,之后的随访间隔取决于该次评估结果;对于高危患者同前。甲状腺侧叶切除术后6~12个月第1次评估根据疾病复发风险,定期行超声检查;当超声检查发现了异常回声区(甲状腺床可疑复发病变及颈部可疑淋巴结肿大),经验丰富的医师仍难以明确诊断时,可采取超声导引下细针穿刺活检(fine-needle aspiration,FNA)或FNA-Tg检查 [23,26]。对于超声可疑淋巴结最短径线≥ 8~10mm时可行FNA细胞学检查和FNA-Tg;对于超声不确定淋巴结,应结合患者分期、病史、结节大小、部位、血清Tg水平,评估是否行FNA细胞学检查和FNA-Tg;短径<5~7mm的淋巴结评估困难,可能FNA临床意义有限;甲状腺床可疑超声病变,可疑病变大于8mm,可行FNA细胞学检查和FNA-Tg。如病灶较小且监测径线稳定,可观察。由于实验室条件不同,操作者手法、测定方法及测量仪器也不同,FNA-Tg的阳性值标准并不一致。2013年欧洲指南和2011年法国甲状腺内分泌研究组 [23,27]的专家共识对甲状腺术后FNA-Tg的建议诊断阳性值是:Tg<1ng/FNA:正常,Tg=1~10ng/FNA(需要同细胞学检查对比),Tg>10ng/FNA:提示淋巴结内或甲状腺床存在肿瘤组织(TgAb过高会干扰FNA-Tg的测量,导致虚假的FNA-Tg低水平表达)。受到标本量和穿刺经验是否丰富的限制,并且目前临床意义不明,不做为常规推荐。
e.颈部增强CT或MRI有助于评估超声可能无法完全探及的部位,如纵隔和Ⅱ区淋巴结,或者Tg阳性而超声检查阴性时 [28]。转移性淋巴结在CT中常表现为平扫点状钙化,增强时不均匀强化、囊变或坏死。此外,颈部增强CT联合US检查较单独US检查可以更准确的检出DTC的复发病灶,帮助明确是否存在更多潜在prmDTC病灶 [29]。颈部增强CT或MRI还有利于评估复发病灶或淋巴结与周围结构及器官的相对关系,如气管、食管、颈动脉鞘的关系,为手术范围提供帮助 [30]
f.国内临床尚无 123I和 124I,放射性碘显像所用核素为 131I。 131I-WBS可发现具有摄碘能力的病变,用于评估甲状腺残留复发和转移病灶的摄碘情况,判定其治疗效果 [31]。对摄碘部位进行SPECT/CT显像,有助于判断摄碘部位的性质,排除假阳性摄取 [32]
g.怀疑肺转移者应行CT检查,以评估肺转移病灶部位,大小,数量,并结合治疗后 131I-WBS,部分肺转移性DTC患者可能存在CT不能发现的微小病灶(直径<1mm),而 131I-WBS表现为弥漫放射性浓聚 [33-34]
h.MRI具有良好的软组织分辨率,是探查肿瘤脑脊髓转移的常规影像检查项目 [7]
i.DTC骨转移应行骨扫描,但其诊断效能高低与转移病灶骨代谢活跃程度有关,且骨扫描发现病灶数目和范围可能低于 131I-WBS [35]
j.PET/CT常用放射性药物为 18F-FDG [36]。虽然不推荐 18F-FDG PET/CT作为DTC初诊的常规检查,但是对于复发和转移的高危病人,如有条件可以考虑,特别是经 131I清甲治疗后Tg或TgAb持续升高,而 131I-WBS全身显像阴性,超声,CT或MRI等影像学也无阳性发现时 [7,37-39]
k.大体检查应包括以下内容:标本类型、肿瘤部位、肿瘤大小、大体形态、肿瘤与毗邻组织结构的关系、淋巴结检出数目、大小和分组。
l.光镜检查应包括以下内容:需参照2017年新版WHO甲状腺肿瘤分类明确组织学类型及亚型、肿瘤大小、侵及范围、腺内播散、切缘、脉管侵犯、神经侵犯、淋巴结转移数和总数、TNM分期 [40]。对形态学为PTC的病例,在可能的情况下进一步回报可能提示不良预后的组织学亚型,如高细胞亚型、柱状细胞亚型、弥漫硬化型及靴钉(hobnail)亚型 [40-41]等;如所含对应肿瘤成分达不到某一亚型的诊断标准,应注明提示不良预后的组织学亚型所占比例。对形态学为FTC的病例,需尽可能评估血管内癌栓数量 [40]
m.常用的用于提示起源的免疫组化标记物包括CK、Tg、TTF-1、TTF-2、PAX-8、Syn、CgA、Calcitonin和CEA等 [42]。常用的提示良恶性的免疫组化标记物包括:galectin-3、HBME-1、CK19、CD56、TPO、E-cadherin、p27、cyclinD1、P53、Ki-67指数等 [31]
n.常用的分子标记包括BRAF V600E、NRAS 61号密码子、HRAS61号密码子及KRAS 12/13号密码子突变,RET/PTC及PAX8/PPARγ重排等 [43-44]。常用的提示预后不良的分子标记包括BRAF V600E、TERT启动子、TP53 [8-9]。其中,多篇研究证实,BRAF与TERT启动子共突变与PTC的侵袭性、复发、死亡风险及发生碘难治性甲状腺癌的风险等密切相关 [8,9,15,45-48],这些研究使分子特征驱动的DTC风险分层及个体化治疗决策令人期待。
参考文献
1.Ferlay J,Colombet M,Soerjomataram I,et al. Estimating the global cancer incidence and mortality in 2018:GLOBOCAN sources and methods[J].Int J Cancer,2019,144(8):1941-1953.
2.SEER Cancer Statistics Review,[National Cancer Institute].https://seer.cancer.gov/statfacts/html/thyro.html. Accessed Mar 3,2019.
3.Zeng H,Chen W,Zheng R,et al. Changing cancer survival in China during 2003-15:a pooled analysis of 17 population-based cancer registries[J].Lancet Glob Health,2018,6(5):e555-e67.
4.Fagin James A,Wells Samuel A. Biologic and Clinical Perspectives on Thyroid Cancer[J].N Engl J Med,2016,375:2307.
5.Sapuppo Giulia,Tavarelli Martina,Belfiore Antonino et al. Time to Separate Persistent From Recurrent Differentiated Thyroid Cancer:Different Conditions With Different Outcomes[J].J Clin Endocrinol Metab,2019,104:258-265.
6.Wang LY,Palmer FL,Nixon IJ,et al. Multi-organ distant metastases confer worse disease-specific survival in differentiated thyroid cancer. Thyroid,2014,24(11):1594-1599.
7.Cooper DS,Doherty GM,Haugen BR,et al. Revised American Thyroid Association man-agement guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid,2009,19:1167-1214.
8.Xing M,Westra WH,Tufano RP,et al. BRAF mutation predicts a poorer clinical prognosis for papilliary thyroid cancer. J Clin Endocrinol Metab,2005,90(12):6373-6379.
9.Xing M,Haugen BR,Schlumberger M. Progress in molecular-based management of differentiated thyroid cancer. Lancet,2013,381:1058-1069.
10.Randolph GW,Duh QY,Heller KS,et al. The prognostic significance of nodal metastases from papillary thyroid carcinoma can be stratified based on the size and number of metastatic lymph nodes,as well as the presence of extranodal extension. Thyroid,2012,22:1144-1152.
11.Haugen,BR,Alexander EK,Bible KC,et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer:The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer.Thyroid,2016,26(1):1-133.
12.Mazzaferri E L,Jhiang S M. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer[J].Am J Med,1994,97(5):418-428.
13.Mazzaferri E L,Kloose R T. Current approaches to primary therapy for papillary and follicular thyroid cancer[J].J Clin Endocrin Metab,2001,86(4):1447-1463.
14.Shaha A R,Shah J P,Loree T R,et al. Patterns of nodal and distant metastases based on histological varieties in differentiated carcinoma of thyroid[J].Am J Surg,1996,172(6):692-694.
15.Xing M,Liu R,Liu X,et al. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol 2014;32:2718-2726.
16.Lin Y,Li T,Liang J,et al. Predictive value of preablation stimulated thyroglobulin and thyroglobulin/thyroid-stimulating hormone ratio in differentiated thyroid cancer. Clin Nucl Med,2011,36(12):1102-1105.
17.中华医学会核医学分会. 131I治疗分化型甲状腺癌指南(2014版).中华核医学与分子影像杂志,2014,34(4):264-278.
18.Liu L,Huang F,Liu B,et al. Detection of distant metastasis at the time of ablation in children with differentiated thyroid cancer:the value of pre-ablation stimulated thyroglobulin. J Pediatr Endocrinol Metab,2018,26;31(7):751-756.
19.Yang X,Liang J,Li T,et al. Preablative stimulated thyroglobulin correlates to new therapy response system in differentiated thyroid cancer. Journal of Clinical Endocrinology & Metabolism,2016,101(3):1307-1313.
20.Wang C,Zhang X,Li H et al. Quantitative thyroglobulin response to radioactive iodine treatment in predicting radioactive iodine-refractory thyroid cancer with pulmonary metastasis. PLoS ONE,2017,12(7):e0179664.
21.Bachelot A,Leboulleux S,Baudin E,et al. Neck recurrence from thyroid carcinoma:serum thyroglobulin and high-dose total body scan are not reliable criteria for cure after radioiodine treatment.Clinical Endocrinology,2005,62(3):376-379.
22.Spencer C,Fatemi S. Thyroglobulin antibody(TgAb)methods-Strengths,pitfalls and clinical utility for monitoring TgAb-positive patients with differentiated thyroid cancer. Best Pract Res Clin Endocrinol Metab,2013,27(5):701-12.
23.Leenhardt L,Erdogan MF,Hegedus L,et al. 2013 European Thyroid Association Guidelines for Cervical Ultrasound Scan and Ultrasound-Guided Techniques in the Postoperative Management of Patients with Thyroid Cancer. European Thyroid Journal,2013,2(3):147-159.
24.Hun KS,Suk PC,Lyung JS,et al. Observer variability and the performance between faculties and residents:US criteria for benign and malignant thyroid nodules. Korean J Radiol,2010,11(2):149-155.
25.Oh HS, Ahn JH, Song E, et al. Individualized follow-up strategy for patients with an indeterminate response to initial therapy for papillary thyroid carcinoma. Thyroid, 2019, 29 (2): 209-215.
26.Chua WY,Langer JE,Jones LP. Surveillance Neck Sonography After Thyroidectomy for Papillary Thyroid Carcinoma:Pitfalls in the Diagnosis of Locally Recurrent and Metastatic Disease. Journal of Ultrasound in Medicine,2017,36(7):1511-1530.
27.Wémeau JL,Sadoul JL,D′Herbomez M,et al. Guidelines of the French society of endocrinology for the management of thyroid nodules. Annales Dendocrinologie,2011,72(4):251-281.
28.AlNoury,MK,Almuhayawi SM,Alghamdi KB,et al. Preoperative imaging modalities to predict the risk of regional nodal recurrence in well-differentiated thyroid cancers. Int Arch Otorhinolaryngol,2015,19(2):116-120.
29.Hong Eun Kyoung,Kim Ji-Hoon,Lee Joongyub et al. Diagnostic value of computed tomography combined with ultrasonography in detecting cervical recurrence in patients with thyroid cancer.Head Neck,2018,[Epub ahead of print].
30.Hoang JK,Th BB,Gafton AR,et al. Imaging of thyroid carcinoma with CT and MRI:approaches to common scenarios. Cancer Imaging,2013,13(1):128-139.
31.Sheikh A,Polack B,Rodriguez Y,et al. Nuclear molecular and theranostic imaging for differentiated thyroid cancer. Mol Imaging Radionucl Ther,2017,26(Suppl 1):50-65.
32.Chen L,Luo Q,Shen Y,et al. Incremental value of 131I SPECT/CT in the management of patients with differentiated thyroid carcinoma. Journal of Nuclear Medicine Official Publication Society of Nuclear Medicine,2008,49(12):1952-1957.
33.Long B,Yang M,Yang Z,et al. Assessment of radioiodine therapy efficacy for treatment of differentiated thyroid cancer patients with pulmonary metastasis undetected by chest computed tomography. Oncology Letters,2016,11(2):965-968.
34.Song HJ,Qiu ZL,Shen CT,et al. Pulmonary metastases in differentiated thyroid cancer:efficacy of radioiodine therapy and prognostic factors. European Journal of Endocrinology,2015,173(3):399-408.
35.Qiu ZL,Xue YL,Song HJ,et al. Comparison of the diagnostic and prognostic values of 99mTc-MDP-planar bone scintigraphy, 131I-SPECT/CT and 18F-FDG-PET/CT for the detection of bone metastases from differentiated thyroid cancer. Nuclear Medicine Communications,2012,33(12):1232-1242.
36.Giraudet AL,Taïeb D. PET imaging for thyroid cancers:Current status and future directions. Annales Dendocrinologie,2016,78(1):38-42.
37.Hempel JM,Kloeckner R,Krick S,et al. Impact of combined FDG-PET/CT and MRI on the detection of local recurrence and nodal metastases in thyroid cancer. Cancer Imaging,2016,16(1):37.
38.Haslerud T,Brauckhoff K,Reisæter L,et al. F18-FDG-PET for recurrent differentiated thyroid cancer:a systematic meta-analysis. Acta Radiologica,2016,57(10):1193-1200.
39.Qiu ZL,Wei WJ,Shen CT,et al. Diagnostic Performance of 18F-FDG PET/CT in Papillary Thyroid Carcinoma with Negative 131I-WBS at first Postablation,Negative Tg and Progressively Increased TgAb Level. Sci Rep,2017,7(1):2849.
40.Lloyd R,Osamura R,Klöppel G,et al. WHO classification of tumours:Pathology and genetics of tumours of endocrine organs.4th edn:Lyon:IARC 2017.
41.G Ganly I,Makarov V,Deraje S,et al. Integrated Genomic Analysis of Hurthle Cell Cancer Reveals Oncogenic Drivers,Recurrent Mitochondrial Mutations,and Unique Chromosomal Landscapes. Cancer Cell,2018,34:256-70 e5.
42.中国临床肿瘤学会甲状腺癌专业委员会.复发转移性分化型甲状腺癌诊治共识.中国癌症杂志,2015,25(7):481-496.
43.Giordano TJ. Genomic Hallmarks of Thyroid Neoplasia. Annu Rev Pathol,2018,13:141-162.
44.Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma.Cell,2014,159:676-690.
45.Liu R. Bishop J,Zhu G,et al. Mortality risk stratification by combining BRAFV600E and TERT promoter mutations in papillary thyroid cancer:genetic duet of BRAF and TERT promoter mutations in thyroid cancer mortality. JAMA Oncol,2017,3(2):202-208.
46.Liu X,Qu S,Liu R,et al. TERT promoter mutations and their association with BRAFV600E mutation and aggressive clinicopathological characteristics of thyroid cancer. J Clin Endocrinol Metab,2014,99(6):E1130-1136.
47.Xing M,Liu R,Liu X,et al. BRAFV600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol,2014,32(25):2718-2726.
48.Yang X,Li J,Li X,et al. TERT Promoter Mutation Predicts Radioiodine-Refractory Character in Distant Metastatic Differentiated Thyroid Cancer. J. Nucl. Med,2017,58(2):258-265.