The lessons of reinforcement learning
Unsupervised reinforcement machine learning, such as MDP and Bellman's equation, will topple traditional decision-making software in the next few years. Memoryless reinforcement learning requires few to no business rules and thus doesn't require human knowledge to run.
Being an adaptive AI thinker involves three requisites—the effort to be an SME, working on mathematical models, and understanding source code's potential and limits:
- Lesson 1: Machine learning through reinforcement learning can beat human intelligence in many cases. No use fighting! The technology and solutions are already here.
- Lesson 2: Machine learning has no emotions, but you do. And so do the people around you. Human emotions and teamwork are an essential asset. Become an SME for your team. Learn how to understand what they're trying to say intuitively and make a mathematical representation of it for them. This job will never go away, even if you're setting up solutions such as Google's AutoML that don't require much development.
Reinforcement learning shows that no human can solve a problem the way a machine does; 50,000 iterations with random searching is not an option. The days of neuroscience imitating humans are over. Cheap, powerful computers have all the leisure it takes to compute millions of possibilities and choose the best trajectories.
Humans need to be more intuitive, make a few decisions, and see what happens because humans cannot try 50,000 ways of doing something. Reinforcement learning marks a new era for human thinking by surpassing human reasoning power.
On the other hand, reinforcement learning requires mathematical models to function. Humans excel in mathematical abstraction, providing powerful intellectual fuel to those powerful machines.
The boundaries between humans and machines have changed. Humans' ability to build mathematical models and every-growing cloud platforms will serve online machine learning services.
Finding out how to use the outputs of the reinforcement learning program we just studied shows how a human will always remain at the center of artificial intelligence.