![中国代数故事(少年读经典·第二辑)](https://wfqqreader-1252317822.image.myqcloud.com/cover/585/47402585/b_47402585.jpg)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer365.jpg?sign=1738786564-XAYz2D9Uh0qpVLC7RQLQa7jaZxpaBcbo-0-ac7b666b7acb77a7c1e95dfc85ff313a)
在中国古代的方程算法中,所列的方程不象现今代数里那样用字母代替未知数,而是记出每一未知项的系数于一定地位,和代数里的“分离系数法”一样。解方程所用的直除法,是从一个方程累减(或累加)另一个方程,用来消去一部分未知数,和现今的加减消元法略有不同。下面举两个例题,把古代的筹算式和代数的新记法并举,读者对照一下就可以明了。
【例一】今有上禾(稻棵)3秉(一秉即一束),中禾2秉,下禾1秉,共有实(禾的果实,即稻谷)39斗,上禾2秉,中禾3秉,下禾1秉,共有实34斗。上禾1秉,中禾2乘,下禾3秉,共有实26斗,问上中下禾各一秉有实多少?答:上禾1秉有斗,中禾1秉有∠
斗,下禾1秉有
斗。(题见《九章算术》)
列上禾3秉,中禾2秉,下禾1秉,实39斗于左行。同法列得中行和右行,如(A)式(古法自右向左依次列三式,现在为便利起见,把它对调一下)。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer305.jpg?sign=1738786564-uGTugjDExPVt2tXi249C40sZUHfAw6u6-0-926b9c7558e237e7db1ed19ca852843a)
以左行上禾遍乘中行,如(B)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer02.jpg?sign=1738786564-Z5xdiMmTYDKD3lOZmyDivihAfJcoYaDZ-0-cf5583f5647ebf5229e8c78201453839)
用直除法从中行累减左行,经二次而头位减尽,如(C)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer03.jpg?sign=1738786564-L4334P1eGx9rerAXhqIEsBzbo8QK5Gad-0-84f7f43ab9a86b62f4fb9b8c17749d97)
仿上法以左行上禾遍乘右行,如(D)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer04.jpg?sign=1738786564-2osqVucsjUnTMcJdj9wbXDFTDwjJCbQs-0-afdef7f13dfe382e8637e9c410c55087)
从右行减左行一次,头位已尽,如(E)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer05.jpg?sign=1738786564-ThpxBiOyovZAK759AL63ClBXMJ0CxMp9-0-378061aae4ce59be85b458bfff090576)
再以中行中禾遍乘右行,如(F)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer25.jpg?sign=1738786564-VHCkL4Eo4675TYFYqUDNbCjty7G2c2XE-0-7b0dc2deac7922d414166976c2980c09)
从右行累减中行,经四次而第二位也尽,再把右行约简,如(G)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer26.jpg?sign=1738786564-wQpRUJL6CgKW2sQsaZOCmH2svBMwyfXe-0-fa9e457e8d0f2b42e0dafd9700afc329)
以右行下禾遍乘中行,如(H)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer27.jpg?sign=1738786564-7GCkXvah5plzimd2GBNDwmg2MYC5Ghue-0-6633ff5a191ebd080a814167096e0512)
从中行减右行一次,第三位已尽,以(G)式中行中禾来除它,如(I)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer28.jpg?sign=1738786564-wyUokocIyRjJBs7iURuTB1mBbnN02YAK-0-dce65c6fad314811891260c3cae26cd8)
以右行下禾遍乘左行,如(J)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer52.jpg?sign=1738786564-z9lMvSb3JnfXjHwljWO3m3eWymLIj7U0-0-5f17a0d65c7033552526459f7405f0ce)
从左行减右行一次,又累减中行二次,第二、三两位都尽,以(I)式左行上禾除之,如(K)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer53.jpg?sign=1738786564-DJn0Gs4HAo9fjeHJWCGLg6DZxckyWoHd-0-5654f0cf5263982fb0dc0c59a45b1e74)
三行各以上数为除数,下数做被除数,除得商数就是上中下禾各一秉的斗数。
设上禾1秉的实是x斗,中禾1秉的实是y斗,下禾1秉的实是z斗,那么依题意可列三元一次方程如下:
(A)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer232.jpg?sign=1738786564-BDu8WalfnK0a8P9kxI42CKDGfS35v3Mn-0-dbcf32d47daea0961fd6ebd9b2cdd169)
以(A1)式首项的系数3乘(A2)式,得
(B)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer252.jpg?sign=1738786564-pSJDbK7YgsMMUzwqgDFyZRhqm9gnIi2h-0-41c99834694bdfdcdcd91b7f6b9f4fd6)
从(B2)式减(B1)式二次,得
(C)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer265.jpg?sign=1738786564-cq9DeDRO9JGuR7KVnJ8PmCsilKl1CrE2-0-45b5d6718850d06bfa015f933b3140bc)
又以(C1)式首项的系数3乘(C3)式,得
(D)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer281.jpg?sign=1738786564-lffgGFeNWV90q4AqwDKdmyUPUSZR4rjH-0-0f21f765226490a0efbdc60128565038)
从(D3)式减去(D1)式,得
(E)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer294.jpg?sign=1738786564-yoRmHEBbHI9RbrWvECyOnOtRMQ8WeIdd-0-639da6bed2aacb2e4a59eb9050343578)
再以(E2)式首项的系数5乘(E3)式,得
(F)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer305.jpg?sign=1738786564-uGTugjDExPVt2tXi249C40sZUHfAw6u6-0-926b9c7558e237e7db1ed19ca852843a)
从(F3)式减(F2)式四次,再以9除所余的式,得
(G)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer06.jpg?sign=1738786564-a3pBEZwqlgIjgSGfjXsqbIKrXNTwTQls-0-a4803da713e4317160f9b674acaaba9d)
以(G3)式首项的系数4乘(G2)式,得
(H)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer29.jpg?sign=1738786564-SwGkVwatB3aiZbEPcgtcmJaKZVLnWFPV-0-fcf7a391a08f26d45b14a124ec16c3f8)
从(H2)式减(H3)式,再以(G2)式首项的系数5除,得
(I)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer54.jpg?sign=1738786564-LSN3hexfYOK8C2uHVK94Lkn5DIQprlSB-0-f826c1054b59c704c9fcbc514dc714e7)
以(I3)式首项的系数4乘(I1)式,得
(J)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer72.jpg?sign=1738786564-QrzvxfmfS46u4LCQGyw8CxExPQck8qD3-0-52c8d2a8607f9d8b7006b54ea7fed8c8)
从(J1)式减(J2)式二次,再减(J3)式,再以(I1)式首项的系数3除,得
(K)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer85.jpg?sign=1738786564-0ZmS8NbZ71pseCBWAWZqHovX5Vzpdbc5-0-a4535a7e07f34b56570bf338d906a3c5)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer103.jpg?sign=1738786564-Ikh4Dr6fUuU37nlm2e7fLULrIA1zJWeD-0-86d3d8bf58221255063886886d8e83eb)
从上举的解法,可见古时的方程算法很是别致,虽较新法略繁,但步骤非常整齐,在使用筹算时可说是很便利的。
【例二】今有上禾6秉的实,去掉1斗8升,等于下禾10秉的实,下禾15秉的实,去掉5升,等于上禾5秉的实。问上下禾各1秉有实多少?答:上禾1秉有实8升,下禾1秉有实3升。(题见《九章算术》)
列上禾6秉正,下禾10秉负,实18升正于左行;又列上禾5秉负,下禾15秉正,实5升正于右行,如(A)式(负数的筹式,《九章算术》用颜色分别,现在为便利计,仿宋代的方法在末位加一斜划)。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer68.jpg?sign=1738786564-nXm2LSizrDXzNGAGREgbWb7sytaOnKeh-0-287f21dd6265211a8363b59f1279a671)
以左行上禾遍乘右行,如(B)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer69.jpg?sign=1738786564-qhvjUhGpfQ470WETANApK33guQrWA4eg-0-9fd9edcdf82a109a98e29554c89b52d8)
从右行累加左行,经五次而头位尽,如(C)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer70.jpg?sign=1738786564-MudmvZwxsmESuGYWaBgicPaAOUDE88Q1-0-4087f50e40e6c87d4ddf628dda71c0df)
右行上数做除数,下数做被除数,除得商数是下禾1秉的实,如(D)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer71.jpg?sign=1738786564-cd5swznkasSxqUzTfqY58eDFyFvgq9QR-0-6d0aec327a1b2fb69c201888e51eeff6)
又以所得数乘左行下禾,从左行末位减,再以头位除,得上禾1秉的实,如(E)式。
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer83.jpg?sign=1738786564-TlMmqHgdfco7taZpyE3vHod4UfPnXa6Z-0-c63498d671ca0867f519a04501fe79fd)
设上禾1秉的实是x升,下禾1秉的实是y升,那么依题意可得二元一次方程组如下:
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer115.jpg?sign=1738786564-DSbkEQtkiVb1JfvI39u6DltEQYbSzqPz-0-57ea0e47f63f01c690e50dce6cb5d108)
移项,整理,得
(A)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer128.jpg?sign=1738786564-wRhqk40irY8dSCXyd29ofo7zz4dHF4mr-0-1c5512de2876f11855c98a5ed272f086)
以(A1)式首项的系数6乘(A2)式,得
(B)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer139.jpg?sign=1738786564-FoFz2a8afsrHQSdmCx5kSRYyzpPwplsd-0-58e78480779f7d9a849187c267999da0)
(B2)式加上(B1)式五次,得
(C)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer150.jpg?sign=1738786564-xTlVbHVveTvEdkO2bISK4rGYyr10ch6Y-0-64a18c4ae3d6857d142a5477fd81563b)
去掉(C2)式左边的系数,得
(D)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer162.jpg?sign=1738786564-UpqDyaBFCqzNDKbuY3crIsBAimipVtc8-0-aad2cd9354c2cb6aaa459dee12f4ebbb)
以(D2)式右边的3乘(D1)式的第二项系数,从右边18减,再以第一项系数6除,得
(E)
![](https://epubservercos.yuewen.com/C0E595/26789305009678606/epubprivate/OEBPS/Images/figer173.jpg?sign=1738786564-BJe8YGi7aqKiQ3fuPlO9gGLAc3k4PX67-0-33ce30199ee6375a5c34432a70ae1b52)
在上举的解法中,有(-30)+(+6)=-24,(+90)+(-10)=+80,(+18)-(-30)=+48……的正负数加减法,又有(-5)×(+6)=-30的乘法。